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Abstract

A well-known job shop scheduling problem can be formulated as follows.

Given a graph G with node set N and with directed and undirected arcs, find an

orientation of the undirected arcs that minimizes the length of a longest path

in G. We treat Athe problem as a disjunctive program, without recourse to

integer variables, and give a partial characterization of the scheduling poly-

hedron P(N), i.e., the convex hull of feasible schedules. In particular, me

derive all the facet inducing inequalities for the scheduling polyhedron

P(K) defined on some clique with node set K, and give a sufficient condition

for such inequalities to also induce facets of P(N). One of our results is that

any inequality that induces a facet of P(H) for some H,K, also induces a facet

of P(K). Another one is a recursive formula for deriving a facet inducing

inequality with p positive coefficients from one with p-l positive coefficients.
I]t,. -"r.,

_We also address&he constraint identification problem, and gives procedure

for finding an inequality that cuts off a given solution to a subset of the

constraints. Accession For
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1. Introduction

We consider the following machine secuencing problem which ii a

special case of resource-constrained scheduling (for background material see

(1, 21, (8,...,121). A number of items have to be processed by performing a

sequence of operations on each of them on specified machines. There are n

operations to be performed, including a fictitious "ston" (operation a), the

objective being to minimize total completion time subject to (i) precedence

constraints between the operations, and (ii) the condition that a machine can

process only one item at a time, and operations cannot be interrupted. The

problem can be stated as

min tn

tj-t 2 d ij ije

(P) t~i -- , e

tj-t, . dij V ti -t> dij, (i,j)eE

where ti  is the starting time of operation i, dij is the minimum

required time lapse between starting operation i and starting operation

j (for instance, completion time of operation i, plus set-up time for

operation j), A indexes the pairs of operations constrained by prece-

dence relations, E the pairs that use the same machine and therefore cannot

overlap in time, and "V" is the logical "or". It is useful to represent the

problem by a disjunctive graph [1, 2, 10, 121 G = (N0,A0 ,E), where No = 0}U N

is a set of nodes, one for each operation, plus a source node 0; A0 = AUt(O,j)" ,.

is not preceded by an operation) is a set of (conjunctive) directed arcs; E is

a set of undirected arcs, one for every pair of operations to be performed

/
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on the same machine. Solving the problem involves orienting the undirected

arcs, i.e., choosing for each of them one of :he two possible directions. It

is therefore convenient to represent each undirected arc by a disjunctive pair

of directed arcs, i.e., a pair of which one member needs to be selected: hence

the name disjunctive graph. We will use this latter representation, and con-

sider E to consist of pairs of directed arcs (i,j),(j,i), with E+ - £(i,j)cEli< J),

E" = ((i,j)cEli > j), and E E+ UE '. The arcs of E occur in disjoint maximal

cliques (by a clique we mean a complete digraph), of which there is one for

every machine. Thus if M indexes the set of maximal cliques (machines), and

for VCN °, < V > denotes the subgraph of G induced by V, then for every reM,

the node set K of the rth maximal clique < K > corresponds to the set ofr r

operations to be performed on the same machine (r).

Every directed arc (i,j)cAUE has a positive length dij, while the arcs

(O,J)eA0\A have length doj = 0. For a pair [(i,j), (j,i)}cE, d j # dji is

not only possible, but typical. We will assume that the arc lengths are

integers satisfying the triangle inequality di, + djk > dik, V ij,k. Though

this assumption involves some loss of generality, it is realistic for the

machine sequencing problem. The disjunctive graph G is illustrated in Figure 1

2I

Figure 1
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on a problem with 5 items (directed source-sink paths), 4 machines (maximal

cliques, whose arcs are shown in dotted lines), and 14 operations (nodes other

than the source). The numbers on the arcs are the lengths di.

The subgraph obtained from G by deleting the disjunctive arc set

0 0E is the ordinary digraph D = (N ,A ), in which node 0 has indegree

zero and outdegree the number of items, node n has indegree the number

of items and outdegree zero, while all remaining nodes have indegree and

outdegree one. In fact D is the union of as many disjoint (except for

their end nodes) paths from 0 to n, as there are items.

A selection in G consists of exactly one member of. each pair of

disjunctive arcs in E. Thus, if o = !.El, there are 20 possible

selections in G. In the undirected representation of E, a selection

in G corresponds to an orientation of all the undirected arcs of G.

For every selection S in G, D, - (N , A US) is an ordinary di-

graph; and the problem obtained from (P) by replacing the set of dis-

junctive constraints indexed by E with the set of conjunctive con-

straints indexed by S is the dual of a longest path (critical path) prob-

lem in D.. Thus solving (P) amounts to finding a minimaximal path in the

disjunctive graph G, i.e., finding a selection (orientation) S that minimizes

the length of a critical path in DS over the set of all possible selections.

Problem (P) stated at the beginning of this section has a variable

t associated with every node of G except for 0. One can of course

introduce a variable t for node 0, but then the problem does not
0

change if t is constrained by t o = 0, which leads to the elimination .
J

of the variable just introduced. We therefore prefer to work with

vectors tce that don't have a component t constrained to be 0.

J



4

Problem (P) is a disjunctive program. It can also be represented as a

mixed integer program by introducing a binary variable for every disjunctive

constraint, but there are advantages to not doing that and using instead the

disjunctive programming approach (for background see 13, 51). In this paper

we investigate the properties of the scheduling polyhedron P, the closed coa-

vex hull of all vectors ts Rn satisfying the constraints of (P). Section 2

introduces the polyhedron P, states some of its basic properties, and discusses

the relationship of P to polyhedra defined by subsets of the constraint set.

Section 3 deals with scheduling polyhedra P(K) defined on a clique with node

set K, and characterizes the vertices of P(K). Section 4 gives a complete

characterization of the facets of P(K). One of the results is that any in-

equality that defines a facet of P(H) for some HCK also defines a facet of

P(K). Another result is a procedure for deriving a facet defining inequality

for P(K) with p nonzero coefficients from a facet defining inequality with

p-1 nonzero coefficients. This section also lists all the facets of P(K),

for K of arbitrary size, having one, two or three nonzero coefficients.

Section 5 gives a sufficient condition for an inequality that defines a facet

of P(K) to also define a facet of P. The condition is verifiable in O(lEt)

time. Finally, section 6 addresses the constraint identification problem and

gives a procedure for identifying facet defining inequalities that cut off

a giver. ta Rn that violates some of the disjunctions of (P). Some of

our results were presented in 14].

2. Some Properties of the Scheduling Polyhedron

Any tcRn satisfying the constraints of (P) will be called a

schedule for G. The feasible set of (P), or the set of schedules
/

for G, can be written as

!J
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2 , (jCA

T = te. > 0, ieN

t.-t. > dij V t.-. > d.., i,jeKI, i~j, ZCM

The closed convex hull of T, clconv T, will be called the scheduling

Dolyhedron, and denoted P(N), or simply P.

T is a disjunctive set, and its convex hull is easiest to describe

when T is in disjunctive normal form [3, 4), i.e., in the form T = T
S CQwhere Q is the index set of all selections in G, and TS  is the

(polyhedral) set of schedules for the digraph DS  defined by the

selection S in G:

T tt-t i > dij (i,j)eAU S

TS = t 5FR

tiO , ieN

If D contains a cycle, TS=0. So the only selections of interest

are those for which the associated digraph DS has no cycles, i.e.,

those indexed by Q* -SeQID is acyclic), since T = U T S. In the
S ScQ*

sequel we assume that Q* # 0. For any ScQ*, we will denote by (ij)s

the length of a longest path from i to j in D . The length of the
S

(unique) path from i to j in D will be denoted by L(i,j).

Theorem 2.1. For every SCQ*, TS has dimension n.

Proof. We define n + 1 vectors t iR , i0,l,...,n, as follows.

Let t0  be defined by to = (,j) j-l,...,n; and for i=l,...,r,

tb
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2t'-4  E j i
i = j

2to j ,

where 0 < E< 1/2.

Clearly, t%'r7' For i=l,...,n, t> 0, Vj, and for (h,j) eA' S, one can

easily check that t - _ - j. Thus for i = 0,1,...,n, teT S . Also, the n+l

points ti c]Rn are affinely independent, since the n X n matrix whose ith row

is ti - 2t°, i = l,...,n, is e times the identity matrix of order n.I1

Corollary 2.2. P is full dimensional.

Next we turn to the extreme points of P. First we characterize

the extreme points of TS  for an arbitrary ScQ*.

Theorem 2.3. A schedule t for DS  is an extreme point of TS

if and only if tn = A(0,n)s, and for all jeN\(n, tj = (0,j)S  or

t j = (0,n)s -A(j,n)s , or both.

Proof. Necessity. Let t*eTS  be such that t*n > A(0n)s. Define

1 2 1
t and t by t = t* + E, tI = t*, j A n; and t' = t*-E, t = t*, j A n.

n n j n n .3 .,12 112

For, suitably small E > 0, t ,t and t* _(tl+t2)  with tI * t * t

hence t* is not extreme. Thus the condition tn = t(O,n)S  is necessary.

Now let t°T s be such that tn , L(0,n)S , but the remaining condi-

tions of the Theorem are violated for jeN* 9 N\(n); i.e., let N*

{jeN\(nllA(OJ)S < to < £(O,n)s - A(j,n)s5 " Define t' and t7 by

t t0 +E, jeN*, t -to, jN\N*; and t" t-E, jcN*, t to, jcN\N*.. .3. .3.3 -3 .3 = .3

Then for suitably small E, t', t"eT$, t to tfl, and to= 2(t'+t").

Thus the condition t (,J) S  or t. = t -(j,n)s or both, for

all jeN\(nl, is also necessary.

IiJ
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Sufficiency. Suppose teT is not extreme. If t > A(O'n) S ,  weni
1 2are done. So let :n = A(0,n)s B . y assumption, there exist t ,t eTs ,

1 2 1 1
t # t C 2, such that t = 1(t +t ). Now t = J(0,n)s impliestl=~ n2= 0 , adsic I &t t

Sn)S and since t t t2 , there exists jeN\(n2 such
n n

1 2 2 1
that either t. < t < t. or t2 < t < t.. In the first case.3 j .. .3 3

9

< t < t < A(0,n)s  - £(j,n)s

and in the second case the same condition holds with the roles of t and

t 2  reversed. In both cases t violates the condition that t .9(0,j) S

or t3 J £(O,n)S - A(j,n)s  or both.4

Corollary 2.4. If t is an extreme point of P, then ta = Z(0,n)s

and ti - A(0,j)S or t j = I(0,n) S  (j,n)s or both, VjeN\tn3, for some ScQ*.

Proof. Every extreme point of P is an extreme point of TS for some SCQ*.l!

For every (not necessarily maximal) clique < K >, we define a schedule

for < K > as a vector teT(K), where

T ( K ) = O t >,.P

t j- t i _> dij V t.-t j -2! dji' i~jeK, i j

where p = IKI, and L(0,i) is the length of the (unique) path from 0 to

i in D = (N°,A°). The closed convex hull of T(K), clconv T(K), will be called

the scheduling polyhedron on < K >, and denoted P(K).

For any VcN, we denote by S(V) a selection in < V > , i.e., a

set of arcs containing exactly one member of each disjunctive pair of

arcs with both ends in V. For V'cVCN , we say that the selection S(V)

is an extension to < V > of the selection S(V') (the selection S(V')

is a restriction to < V' > of the selection S(V)) if the arcs of S(V)

with both ends in V' are precisely those of S(Vt ).

J



versely, we say that a schedule t' for < K > is a restriction to < K >

of the schedule t for G, if t is an extension of t'. By the choice of

the lower bounds L(O,i), icK, every schedule for G can be restricted to

any of the cliques of G. Therefore, for every clique < K > of G,

(2.2) P Q P(K).

The more interesting question, of course, is when can a schedule for some

clique < K > be extended to a schedule for G. This question is intimately re-

lated to the problem of facet lifting, i.e., to the connection between facet

inducing inequalities for P(K) and for P. It will be investigated in section

5, where we will give a sufficieut condition for an inequality that defines

a facet of P(K) to also define a facet of P. This condition is always satis-

fied for some of the cliques of G, so at least some of the facet inducing

inequalities for P(K) are always facet inducing for P itself. This provides

the main, though not the only, motivation for focusing in the next 2 sections

on the polyhedra P(K).

3. The Scheduling Polyhedron on a Clique

In this section we study the properties of the scheduling polyhedron

on a clique, or briefly the clique polyhedron P(K) = clconv T(K). If JKJ = p

and if we denote Li = L(O,i), ieK, then

T (K) - R 1 t, 
i i}.

- dii V t i - t dl, v i,jcK,

As before, a vector teT(K) will be called a schedule for < K >. ./

Apart from its connection with machine sequencing, and more generally

with the resource constrained scheduling problem, the polyhedron T(K) is an

J
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interesting object in its own right. A selection S(K) in < K > is the arc

set of a tournament in < K >. Every tournament is known to have a directed

Hamilton path (i.e., a directed path containing all the vertices), and for

an acyclic tournament this path is unique. In fact, every acyclic tourna-

ment is the transitive closure of its unique directed Hamilton path. A

selection S(K) is therefore uniquely determined by the sequence of the nodes

of K in its directed Hamilton path, and conversely, every selection S(K) de-

fines a unique sequence of the nodes of K. Thus the scheduling problem on

a clique, namely the problem of finding

(3.1) min max t,
t eT(K) icK

with Li = 0, icK, is a "dual" formulation of the problem of finding a short-

est Hamilton path in < K >, using node rather than arc variables. The

latter problem in turn is polynomially equivalent to the traveling sales-

man problem (TSP). Indeed, an optimal tour for the TSP yields a shortest

Hamilton path by deletion of the largest arc. Conversely, finding for each

icK a shortest Hamilton path originating in i (which is problem (3.1)) with

the extra condition that t, = Li = 0), then adding to each path the unique

arc that closes it, and choosing the shortest of the p resulting tours,

yields an optimal solution to TSP.

The scheduling polyhedron P(K) on a clique < K > is related to the

linear ordering polyhedron PLO on < K > studied recently by Grb'tschel, Ju~nger

and Reinelt [51. PLO is the convex hull of the incidence vectors of acyclic

tournaments in < K >. It is a bounded polytope in IpR -1) the space spanned

by the arcs of the complete digraph < K >, whereas P(K) is an unbounded poly-

p
hedron in IR . When P(K) is svecialized to the case where L. 0, icthere



is a one to one correspondence between its vertices and acyclic tournaments

in < K >, as will be shown later in this section. Hence there is a one to

one correspondence between the vertices of P(K) (in the case Li = 0, icK) and

those of P" One might therefore expect a similarly close relationship be-

tween facets of PLO and those of P(K). In fact, however, the facets of P(K)

are rather different from, and seemingly unrelated to, those of P LO A set of

p vertices that lie on a facet of P0 may not lie on a facet of P(K), and vice

versa. While the facets of P0 are independent of the arc lengths, the facets

of P(K) strongly depend on the arc lengths dij.

Whenever possible without risking confusion, the notation S(K) for a

selection in < K > will be abbreviated to S. Every selection S in < K >

defines a polyhedron

F 1 t > L , icKT(K)s = F  ~ (~~~
T ( K S = e I t i t , ? ad j , (i ,j ) )

which is nonempty if and only if S is acyclic. Let Q(K) be the set of selec-

tions in < K >, and Q(K)* = (ScQ(K) IS is acyclic). Then the disjunctive

normal form of T(K) becomes

T(K) = T(K)s .

ScQ(K)*

For every ScQ(K)*, T(K)S is obviously full-dimensional; hence so is P(K).

For icK and an acyclic selection S in < K >, we define the rank of i

in S as the position (rank) of i in the sequence associated with S.

Theorem 3.1. Let S be an acyclic selection in < K >, and let .7
j(l).... ,j(p) be the sequence defined by S on K. Then T(K)s is a displaced

polyhedral cone with vertex to defined by

J
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j(1) C(I)
(3.2)

t0  = max , L d k 2
i(k) = (k)' ti(k-l) +  j(k-l),j(k)'

and extreme rays given by w., i = 1,...,p, where

(3.3)=wI k = p -i + 1,.. .,p
(3.3) =

j(k) 0 otherwise.

Proof. The vector to satisfies all the inequalities of T(K)s, and

any tgT(K)s satisfies tj > to, * jcK. Now define new variables t' = t -ti
Si- J i i J

jeK, and let T(K)S be the polyhedral cone

T(K) S - t IeI p~t '1CJ

= i:t t O -- (i,j)CS}
S t 0O .

We will show that tcT(K)S if and only if t'cT(K)s, where t = t - t

Let t'gT(K) S. Then t' > 0 implies titi>Li, and t' - t' > implies

t t >to -to > hence teT(K)s.
tj -i _t- ti _ di1 ,

0 I
Conversely, let tcT(K) . Then t > to, which implies t > 0, JcK.

Further, for every (i,j)cS, t - t, _ maxdj, L - to ; and hence

i - o -

since

t0 - t = , Mx[L, t0 dij
j i £l.j ti+d.

= a i , Li - to3.

Finally, the vertex t' = 0 of T(K)S corresponds to the point t = t0 of T(K)S.

his proves that T(K)S is a displaced polyhedral cone 
with vertex .

.3J

9
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In view of the correspondence between T(K)s and T(K)', the extreme direc-
tions of T(K)S are precisely those of T(K)". Since the vertex of T(K)' is

S S S

the zero vector, w is a direction vector of T(K)' (hence of T(K) ) if and

only if weT(K) . For i = 1,...,p, it is easy to see that wi cT(K)'. Further,

each w i satisfies wi . 0 for j = j(l),...,j(p-i), and WI(k) - Wj(kl) = 0

for all kc(l,...,p)\'p - I + I1. Since each wi RP satisfies with equality

p-I inequalities whose coefficient matrix has full row rank, each w is extreme.

It remains to be shown that w , i = 1,...,p are the only extreme direc-

tion vectors of T(K)s . This we do by expressing an arbitrary t'eT(K)'

as a positive linear combination of the wi, i = 1,...,p.

Let t'T(K)', and consider the p vectors t(i) i = !,...,p, defined

by t~l) = t~'~k 1,...,p, and for i 2

ti) 0 k=l,...,i-I
J (k) =

ltj(i) " j(i-l) k =i..p

Then each t(i) is either the zero vector, of a positive multiple of

the extreme direction vector w and t' = t Ii
i=l

Next we turn to the extreme points and extreme direction vec:tors of P(K).

Naturally, every extreme point of P(K) is an extreme point of T(K)S for some

ScQ(K)*; but the converse will be shown to be true only if P(K) satisfies

a regularity condition. Also, every extreme direction of P(K) is an extreme

direction of T(K) s for some ScQ(K)*, but the converse is never true.

In order to prove some properties of the vertices of P(K) we need a

characterization of the extreme direction vectors of P(K), so we start with

the latter.
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Theorem 3.2. The extreme direction vectors of P(K) are precisely the

unit vectors e., i =.l,...,p.

Proof. For i = 1,...,n, the unit vector e. is an extreme direction vec-

tor of every cone T(K) such that i is the last node of the sequence defined

by S. Hence every e. is a direction vector of P(K), and since e. is a unit
. 1

vector and T(K) is contained in the positive orthant, each e. is extreme for
3.

P(K). Every other extreme direction vector of T(K)s, for every ScQ(K)*, is

the sum of unit vectors; hence none of them is extreme for P(K). Since every

extreme direction of P(K) is an extreme direction of T(K)S for some SCQ(K)*,

it follows that P(K) has no extreme direction vectors other than the p unit

vectors eif

Next we turn to the extreme points of P(K). We will say that the dis-

junctive set T(K) (as well as the polyhedron P(K) and the clique < K > ) is

regular, if

(3.4) L. " L. < dij *i,JcK , i j

and

(3.5) dij + djk > dik V i,j,keK, i 0 j # k # i.

Condition (3.4) implies that for every ScQ(K)*, the vertex to of the cone

T(K) S satisfies tj(1) 
0  Lj(1) and

(36 o od

(3.6) tk (k-l) + dj(k-l),j(k) > Lj(k)' k - 2,...,p.

i.e., the second term of the bracketed expression in (3.2) is strictly greater_

than the first term for k = 2,...,p, where, as before, p = IK . By recur-
0

sively substituting for t (k.1), (3.6) can also be written as

k
(3.7) t 0  Lj(1) +hZ d ,(h-l),J(h, 

> Lj(k) , k =2,...,p.
j(k) h=2 )
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Later we will show that regularity plays a crucial role in the facial

structure of P(K): certain facets exist only if P(K) is regular. Here we

prove that regularity is a necessary and sufficient condition for the vertex

of every cone T(K)S to be a vertex of P(K).

Lemma 3.3. Let t0 eR p be a schedule for < K >. If there exists a

schedule t* such that t* < t and t* < to for some icK, then t is not a
i

vertex of P(K).

Proof. If there exists t* as described, then to can be expressed as the

sum of t* and a positive combination of unit vectors. Since the latter are

direction vectors of P(K), to is not an extreme point of P(K).jj

Lemma 3.4. Let jcK be such that L - Li ? dij for some ieK\(j}. Then

for every SeQ(K)* in which j has rank 1, the vertex of T(K)S is not a vertex

of P(K).

Proof. Let S be any acyclic selection with associated sequence

J(1),...,j(p) such that j = j(l) and i a J(q) for some 1 < q p; and let

to be the vertex of T(K) Then to satisfies (3.2). Now let S*eQ(K)* be

the selection associated with the sequence (l), .. ,.(p), where 1(l) = i =j(q),

and

J ( k l )  k =2,...,q

1(k) {i- lLJ(k) k =q + 19,...,sp;

and let t* be the vertex of T(K)s,*. Then tj(1 ) = Lj(q) < to(q) = t()since

the positivity of d for all k,ZcK implies that to > L() L >
UJ(q) j i)

Li =Lj(q). For 2 < k < q, we show by induction that tj(k) = tj(k). For

k = 2, we have t() L = t Suppose the equality holds for

k = 2,...,r - 1, and let k r < q. Then by the induction hypothesis

J
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(3.8) t* ' max (L t 0 d.(r) j(r-l)' j(r-2) j(r-l),j(r)

o 0j(r-l) = Z(r)"

For k = q + 1, we have

(3.9) o*=ax(Lj(,+) d(3.9) 1(q+l) = atL i!) j(q-1) ' (q-1),j (q--L)

< Mx(L0 +d< a j(q+l)' rj(q) + j(q),j(q+,)

00St; m to

(q+l) L(q+l)'

where we have used the triangle inequality d <(q-l),J(q-l) dj(q-1),j(q)
dqj(q)-,Jl(l+l)l

Finally, for q + 2 < k < p (if p > q + 2), we have again by induction

on k,

(3.10) % (k) <mxLJ(k), t(k-l) + dJ(kl1),j(k)

o 0

J(k) L tj(k)'

We have shown that t < for all hcK, with < to for h J(q) = L(1).

From Lemma 3.3, it then follows that t0 is not a vertex of P(K).i:

Lemma 3.5. Let the ordered triple £i,j,h] be such that dij + d = dih"

Then for any ScQ(K)* in which i and h have rank 1 and 2 respectively, the

vertex of T(K)S is not a vertex of P(K).

Proof. Let S be any acyclic selection with associated sequence

j(1),...,J(p) such that i - j(l), h = J(2), and j = j(q) for some 2 < q p;

and let to be the vertex of T(K)S Then to = Lj and
j(l) j(l)

to 0 a~ t d j 3 k 2,..pi(k) = maxt j(k)' tj(k-l) j(k-l),J(k)'

/"

S
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Now let S* be the selection associated with the sequence L(l),...

where A(l) = i - j(l), 1(2) = j = j(q), and

£()=j(k-1) k = 3,...,q

[j(k) k - q + l,...,p,

and let t* be the vertex of T(K)s. Then t*() Lj() = to(,) t()
I) j) IM

For 2 < k < q, we show by induction that t* < to). - For k 2,
Mk £(k)'

t ( 2 ) =max Lj(q) Lj( 1 ) + dj ( 1 ) j (q) < t(q) to (2) S (k) <

t0 for k = 2,...,r-l, and let k - r < q. Then by the induction hypothesis
, (k)

tl(r) < maxtLj j(l) r-2) + dj(r-2 ),j(r-l)3

to = 0
j (r-l) I£(r)"*

For k = q + 1, (3.9) holds and for q + 2 < k < p, (3.10) holds for

the same reasons as in the proof of Lema 3.4. This proves that tl(k) < tlo(k)

for k - 1,...,p.

Further, from the positivity of dk£ for all k,LsK, it follows that

< 3 and to = > to to Therefore at least one

of the two inequalities tl(2),< tol(2) a t(3) tO() holds strictly.

Thus from Lemma 3.3 it follows that t is not a vertex of P(K).l

Theorem 3.6. The vertices of P(K) are precisely the vertices of the

cones T(K)S, SeQ(K)*, if and only if T(K) is regular.

Proof. The "only if" part follows from Lemmas 3.4 and 3.5. To prove

the "if" part, suppose T(K) is regular, and let to be the vertex of the

cone T(K)S for some StQ(K)* with associated sequence j(1),...,j(p), where

0 1 1 2 1 2
p - IKI. Suppose now that t ;(t + t ) for some t t eT(K). We will

show by induction on k that for i = 1,, ti(k) to(k) for k = ... IP

and ti < i for A > k, for k I, ..,p-l. For k 1, the inequalities
j(k) j (Z)

/

.J
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t > i = 1,2, and the equation to -- Lj imply that t
i

S(1) j ( I) " i (( )

L i - 1,2. Further, t ( < for all L > 1, or else for some

l€(2. ... ,p) we have

Lj() j),j(l) (Z) + dj(t),j(1) tj (1) LI)j ;) i()1 -i (- : (t (

contrary to the first regularity condition, (3.4).

Suppose for i = 1,2, k = l,...,rl, tik) =dt(k)a tj() < tj( )

for all I > k; and let k = r. Then tr t(), or else from (3.4) and
j(r) r)

the induction hypothesis

i t0 0
j(r) J(r) j(r-l) j(r-1),j(r)

ti +d
ij(r-l) j(r-1),j(r),

i i
a contradiction. Further if r < p, then for i = 1,2, t < tj() for all

I > r; or else there exists I > r with tji(r.l) < t < t for i = i or3(r1) <  j(I) < j(r)

2, which implies
tri +d + d i + d t i
J(r-1) + dj(r-l)',J (1,) +J(L)J(r) ti(r-l) j(r-l),j(r) - J(r)

contrary to the second regularity condition, (3.5).

This completes the induction and proves the "if" part of the Theorem.-1

Example 3.1. Consider the clique K = (1,2,3] shown in Fig. 2, with

L 1 M 10, L2 1 8, L3  11; d12 1, d13 m 2, d21 = 2, d 2 3 = 4, d31 = 1, d32 2.

FiR 2

LI  1 0 2 L 2
= 8

2 4
2 4/2

L 3 - 11

.... ~F st 2
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Condition (3.4) is violated for the ordered pair (i,j3 (2,13 and

condition (3.5) for the ordered triples (2,1,33 and (3,1,23. Table 1 lists

Table 1

Vertices t of T(K)
Sequences all d as
associated ij d =3 d 39 d 2
with S specified 21 21 31

1,2,3 (10,11,15) (10,11,15)* (0,i1,15)*

3,1,2 (13, 8,12) (13, 8,12)* (14, 8,12)*

2,3,1 (12,13,11)* (12,13,11)* (13,14,11)*

1,3,2 (10,14,12) (10,14,12)* (10,14,12)*

2,1,3 (10, 8,12)* (11, 8,13)* (11, 8,13)*

3,2,1 (15,13,11) (16,13,11) (16,13,11)*

*Vertices of P(K).

the sequences associated with the 3! - 6 acyclic selections ScQ(K)* and the

vertices of the corresponding cones T(K) . Because the regularity condi-

tions are violated, only 2 of the 6 vertices of the cones T(K)S are vertices

of P(K): (12,13,11) and (10,8,12). For every other t, there exists some

tI such that t' < t. If we replace d21  2 by d2 1 = 3, condition (3.4)

is satisfied for all i,JcK, i 0 J, and condition (3.5) is violated only

for the triplet (3,1,2). As a result, all but one of the vertices of the

cones T(K)S become vertices of P(K), the exception being (16,13,11) (since

there exists a vertex (12,13,11)). If we also replace d31  1 by d31  2,

T(K) becomes regular, and as a result all 6 vertices of the cones T(K)S be-

come vertices of P(K).Ii

Next we turn to the facets of F(K).

4. Facets of the Clique Polyhedron

Given a convex polyhedron C Cn, an inequality ox 2 o is said to

define (or induce) a k-dimensional face of C, if cx 2 0 for every x c C

J
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and ax = 0 for k + 1 affinely independent points x c C. Thus the inequality

ax > a° defines a facet of C, if ax a a , for all x e C, and ax = co for

n affinely independent points x c C.

Let IKI = p. For i = 1,...,p!, let Si be the ith acyclic selection

in < K >, and let Ji(1),...,ji(p) be the sequence associated with Si.

Further, let vi be the vertex of the cone T(K)sj, i.e., let vi REP be

the vector whose components are defined recursively by

(4.1) 
v i 

L  

k

(1k),( max(L i(k), vi (k-1) + di(k-l),ji(k) k =2,...,p

th
Finally, let V be the p! x p matrix whose i row is v , and let

e (1,...=,)T have p! components.

Theorem 4.1. The inequality at > 1, where a, t cRP , defines a facet

of P(K) if and only if a is a vertex of the polyhedron

F = p  -Va>e
a oJ

Proof. at > I defines a facet of P(K) if and only if (i) at > 1 for

all tcP(K), and (ii)at - 1 for p affinely independent points tcP(K).

Condition (i) holds if and only if asF. Indeed, every vertex of P(K)
i

is present among the row vectors v of V; and the extreme direction vectors

of P(K) are the rows of the identity matrix associated with the constraint

a > 0. Furthermore, every row vi that is not a vertex cf P(K), is never-

theless contained in P(K). Hence at > 1 is satisfied by all tcP(K), if and

only if Va ? e and a > 0, i.e., if and only if aF.

Further, condition (ii) holds if and only if for some integer kc[l,...

P(K) has k extreme points v , h = 1,...,k, and p-k extreme direction vectors

J
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e h k ,...,p, such that vi(h) 1, h and a (h)

j(h)= 0, h k + 1,...,p. The "if" part of this statement holds since

v i(i)a 1 and aj(h) = 0 imply (vi (1) + ej(h)) = 1, k = k+l,...,p, and the
,~l i.° .~l , i ( 1 )

p points v i() ,vi(k) v(1) + e J(k+l) .... + e(p) are affinely

independent. The "only if" part follows from the fact that any teT(K) that

is not a vertex of P(K) and satisfies oet = 1, can be represented as a posi-

tive linear combination of extreme points vi of F(K) that satisfy ctv = 1,

and extreme direction vectors e. of P(K) that satisfy eja = 0, where the

i
weights of the v sum to 1. Thus (ii) holds if and only if for some

ke[l,. . .,p, a satisfies with equality k of the inequalities v i > 1 and

p-k of the inequalities C. > 0, such that the p inequalities in question

form a system of rank p; i.e., if and only if c is a vertex of F.II

Of course, Theorem 4.1 remains true if all redundant inequalities are

removed from the system defining F. Because of the large number of constraints

that define F, Theorem 4.1 by itself does not seem to offer a practical way

of generating facets of P(K). When combined with the next Theorem however, it

provides an efficient way of obtaining those facet inducing inequalities with

few positive coefficients.

Theorem 4.2. Let < H > and < K > be cliques, with H CK, IHJ = I and

JK1 = p, 2 < A < p. The inequality aY > I, where a, ye€R, defines a facet

of P(H), if and only if the inequality (0,0)t > 1, where (a,O), traP, de-

defines a facet of P(K).

Proof. Necessity. Suppose cty > 1 defines a facet of P(H). Then there

exist I affinely independent noints v iCP(H), 
= i, ,, such that each yi

is a schedule for < H >, and ayi = I, i = I,...,L. Each vi can be extended

to a schedule t for < K > as follows. : S(H) is the selection in < E > de-

.!
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that of K. Thus there are large classes of facets of P(K) that can be gen-

erated at a fixed computational cost, whatever the size of K. More generally,

the work needed to derive a facet inducing inequality for P(K) grows with the

number of positive coefficients of the inequality; and facets defined by in-

equalities with few positive coefficients are easy to generate.

Next we address the question of how one can derive a facet inducing

inequality with p positive coefficients from one with p-i positive coefficients.

Let < K > be a clique with IKI - p, let HCK with IHI = p-l, say

H = £1,...,p-l}, and let V and W be the matrices whose rows are the vertices

of P(K) and P(H), respectively. Note that every row w of W corresponds to

k k i ksome row v of V, where v = , vkp). and the sequence associated with v

assigns rank p to node p. For all the remaining rows of V, the associated

sequence assigns rank p to some node je(l,...,p-1. Let R(V) and R(W)

denote the row index sets of V and W, where every row of V that corresponds

to a row of W preserves the index of the latter, i.e., the first IR(W)I ele-

ments of R(V) are those of R(W).

For any matrix M, let det(M) denote the determinant of M, let MS denote

the matrix whose rows are those rows of M indexed by S, and let Mj be the

matrix obtained from M by substituting a column of l's for the j column.

Theorem 4.3. Let WS be a (p-l)x(p-l) submatrix'of W such that the in-

equality at > 1, where the components of a are

det(W 1)

det(Ws > 0 j = 1... ,p-l
(4.2) =

0 7 P

induces a facet of P(K). Further, let

i ! ! II
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det (VPu~I det(VpU 3(4.3) det ( sPUNkI in det(V Sufi))]

det( SU~k 3 ) icR(V) ,S de(Vsi)

Then the inequality Bt > 1, where the components of are

det(V(4.4) j det (VSljfkl)

det ( SUtk})

also induces a facet of P(K); and if the minimum in (4.3) is positive and

unique, then 0 > 0, j -,...,n.

Proof. Since the inequality at > 1 induces a facet of P(K), it also

induces a facet of P(H) (Theorem 4.2), hence the vector a , (alp...,lp-l)

is a vertex of the polyhedron FW = [£IWa_> e, C_> 0) (Theorem 4.1).

We have to show that if (4.3) holds, then defined by (4.4) is a vertex

V
of F = (BIV5 > e, 5 > 0). Then by Theorem 4.1, the inequality 5t > I

induces a facet of P(K).

Consider the system of equations

(4.5) v 1 = 1 , is

where v' is the i t h row of V. Since SCR(W), each vi is of the form (w i , v" , vip)

There are two possible cases.

Case 1. There exists no 5eF
V satisfying (4.5) with $ > 0. Then there

p
exists some kcR(V)\S such that (4.5) together with v = I implies 5p = 0

and has the unique solution 5 - a. Hence the minimum in (4.3) is 0 and 8 - a

V
is a vertex of F

Case 2. The minimum in (4.3) is positive, i.e., there exists $F V

satisfying (4.5) with E > 0. Then (4.5) defines an edge of FV, one of K
whose endpoints is E = o, whereas the other endpoint is given by the smallest

€ J
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value of B for which either (i) some inequality 0. >0, jctl,...,p-1},

becomes tight; or (ii) some inequality v _ $ 1, icR(V)\S, becomes tight.

Let B1 and $2 be the values of p for which (i) and (ii), respectively, occur.
p p P

1 2 1 2
We claim that p > 2 . For suppose p < p , i.e., there exists a vectorWeca ta p-p pp

0 O]RP that satisfies (4.5) and P = 0 for some i ,€l,. and such that
j*

vi° > 1, - *(V S.Ten(,
V $O >1, ieR(V),lS. Then p) is a vertex of

FV ri(5 = 03, hence we have v iP = 1 for p-l of those inequalities indexed

by icR(V)\S, for which j, has rank p in the sequence defined by v But this

contradicts the assumption that p <
p p2 th

Now 2is the value defined by (4.3), namely the p component of the
p

solution 0, as defined by (4.4), of the system v 0 = 1, ieSU k3, where

keR(V)\S is the index of the inequality that becomes tight for 2 . Hence
pp

6 is a vertex of FV, i.e., Ot > 1 induces a facet of P(K).

Further, if the minimum in (4.3) is both positive (as in case 2 above)

and unique, then $j > 0 for all j, since otherwise, as shown above, the mini-

mum in (4.3) is not unique.j

In the following we will list all facet inducing inequalities for P(K)

with 2 or 3 positive coefficients. But first we examine the trivial facet

inducing inequalities, i.e., those having a single positive coefficient.

Proposition 4.4. For all JeK, the inequality t. > L induces a facet

of P(K).

Proof. W.l.o.g, we assume that L. > 0 for all J. This can alwaqs beJ

guaranteed by shifting the origin of the coordinate system, which does not

affect the facial structure of P(K). Then the vector a defined by a = /Li,

a, = 0, * i 4 J, is a vertex of F = (alVa> e, a .. 03, where the rows of V
i

are the vectors v defined by (4.1). Hence from Theorem L.1, the inequality

et > 1, that is tj .. Li, induces a facet of P(K.,
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Next we turn to facet defining inequalities with two nonzero coefficients.

Theorem 4.5. Let < K > be a clique. For any i,jcK, i # J,

(4.6) (dij + Li- L1 )ti + (dii + L4 - Li)t j i dijdji , Lidji -- Ljdi

is a nontrivial facet inducing inequality for P(K) if and only if

(4.7) -dji < Lj - Li < dij"

Proof. From Theorem 4.2, (4.6) defines a facet of P(K) if and only

if it defines a facet of P((i,Jl). From Theorem 4.1, this is the case if

0 0 0and only if the point a = (a, , .), where

d d i +Li'L j 0  dji+Lj -Li
a djdji+Lidj +Ljd j = d dji +Lid ji+Ldij

is a vertex of the polyhedron F({i,j)) defined by the inequalities

La + maxLj, Li + dja j > 1

(4.8) max(Li, L + d jii + Ljaj

S1 0, a.j o >

If (4.7) holds, then the maximum in the first and second inequalities

of (4.8) is attained for Li + dij and L + dji , respectively, and a is the

unique solution to the system obtained by requiring these two inequalities

to be tight. Since a also satisfies the remaining two inequalities of

(4.8), it is a vertex of F((i,j)) and hence the inequality (4.6) defines

a facet of P(K). Further, if (4.7) holds, then a0 > 0 and a0 > 0, i.e.,

the facet is nontrivial.

On the other hand, if L. - L. > di, or L. - L. > d (both inequalities
1 3~ i 3 1 -ji

cannot hold at the same time), then the maximum in the first or second in-

-I
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equality of (4.8) is attained for Li or Lj, respectively, and the solution

to the system of two equations is a, = 0, a.m 1/L in the first case, aj a 0,

of = 1/L in the second; hence in these cases o't > 1 coincides with one of

the two trivial facet defining inequalities associated with the indices i,.J,

and (4.6) does not induce a facet..

Note that (4.7) is the regularity condition (3.4) for the clicue

< (i,j) >. Since JVi,j31 = 2, condition (3.5) does not apply. Thus regu-

larity of the clique < i,j) > is a necessary and sufficient condition for

the polyhedron P(K) (where < K > is any clique containing (i,j)> to have a

facet inducing inequality at > 1 with i > 0, j > 0 and aek = 0, * k 0 i,j.

Next we characterize the facet inducing inequalities with 3 nonzero

coefficients for an arbitrary clique < K > with IKJ = p. From Theorem 4.2,

an inequality of the form a Jltjl + j2tJ2 + fj3 t > 1 induces a facet of

P(K) if and only if it induces a facet of P((J1 , J2' i3 ) the clique poly-

hedron defined on the vertex set (J,' j2' j3). From Theorem 4.1, this is

the case if and only if a = (aJl' J2' j3 ) is a vertex of the polyhedron

F a -(ccI Va e, a ~
6

where eR6 and V is the 6 x 3 matrix whose rows are defined by (4.1) for

p = 3. To simplify the notation, we assume that Lil' J2' J33 - tl,2,33.

i
Denoting by Pi the sequence (permutation) associated with row v of V, we

will assume that the rows of V, indexed by R(V), are ordered so that

P, a (1,2,3) P4 = (1,3,2)

P2 = (2,3,1) P5 = (2,1,3)

P 3  = (3,1,2) P6  = (3,2,1).

| ! J
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Further, we will assume that < (1,2,31 > is regular; which implies

that the matrix V is of the form

L 1 L1 + d12 L1 + d12 + d23

L2 + d23 + d31 L2 L2 + d23

L3 + d31 L3 + d31 + d12 L3V=
1  L1 + d13 + d32 L1 + d13

L2 + d21 L2 L2 + d21 + d13

L3 d32 + d21 L3 + d32 L3  )i

As in Theorem 4.3, we let V(ik,, denote the 3 X 3 matrix consisting of

rows i,k,l of V, and let Vji k,£ be the matrix obtained from Vci,k, 3 by

substituing I for every entry of column j.

Theorem 4.6. Let K = (1,...,p), let < (1,2,3) > be regular, and let every

4 X 4 submatrix of (V,e) be nonsingular. Then P(K) has exactly four facets

induced by inequalities at > 1 with a > 0 for j = 1,2,3, aj = 0 for

j = 4,5,...,p. In particular the coefficients of the four inequalities

are defined by

(4.9)= det Vi )/detV~i,k,£}) , j = 1,2,3,

a. = 0, j = 4,5,...,p, where the four triplets i,k,.cR(V) are (1,5,r3, {2,6,s},

(3,4,t3 and (r,s,t], with (r,s,t3 = (2,3,1) or (4,5,6).

Proof. From Theorem 4.2, an inequality at > 1 with a 0, j - 4,5,...,p,

induces a facet of P(K), if and only if the inequality alt, + 22t2 + C3t3  I

induces a facet of P({L,2,3)). From Theorem 4.1, this is the case if and

only if a is a vertex of the polyhedron F -{yel 31Va 2 6, a 2 01.

J
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According to a classical result of Steinitz, the number of vertices

3of a polytope (bounded polyhedron) in]R is bounded by 2f - 4, where f is

the number of facets; and this bound is attained when the polytope is simple

(totally nondegenerate), i.e., when each vertex lies on exactly 3 facets,

or, equivalently, on exactly 3 edges (see for instance Grunbaum [51, p. 190).

Now F is never simple, since v11 = v 4 1, v22 ' v52 and v3 3 = v6 3, and as a

result each of the 3 vertices having a single positive component (namely:

aI . I/1 ' 02 0'3 = 0; a2 a 1/12, = 3 = 0; and Q3 = I/L3, 01 = a2 = 0)

lies on 4 facets, i.e., is degenerate, if it exists at all (i.e., if Lj # 0).

Furthermore, F is unbounded. We therefore define a polytope (bounded poly-

hedron) F*, obtained from F by

(i) assuming L > 0, j = 1,2,3 (this guarantees the existence of

the 3 vertices with one positive component);

(ii) replacing L by L. + c > Li, J - 1,2,3, in rows 4,5,6 (this

makes those same 3 vertices nondegenerate); and

(iii) adding the inequality 01 + U2 + a3 < M, where M > I/L., j = 1,2,3

(this makes F* bounded).

Given the regularity of < (1,2,3) > and the assumption that every 4 x 4

submatrix of (V,e) is nonsingular, F* is simple; and listing its vertices

allows us to list those of F.

Since F* has 10 facets (defined by the 6 inequalities via > 1, the 3

inequalities a 0, and the inequality introduced in (iii)), it has 2f - 4 = 16

vertices. Of these, 3 lie on the plane 01 + 02 + a3 = M and are therefore

not vertices of F. Another triplet consists of the 3 vertices with exactly
/

one positive component; these are also vertices of F. A third triplet of

vertices of F*, also shared with F, are those with exactly two positive

i
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components, that give rise to the facet defining inequalities (4.6) for the

corresponding 2-clique polyhedra. A fourth triplet consists of those ver-

tices of F* having two positive components, whose counterparts in F have a

single positive component (because of the degeneracy caused by v11 = v41 ,

v2 2 3= v6 ). This is a total of 12 vertices of F* (6 vertices
'33 '63

of F) with one or two positive components (see Table 2, in which the facets
i

are numbered from 1 to 6 for v a > 1, i = 1,...,6; 7,8,9 for a. > 0,

j = 1,2,3; and 0 for a1 + a2 + C3 K M). Thus there are 4 facets left,

each with 3 positive components.

From Theorem 4.3, there is a vertex with 3 positive components ad-

jacent to every vertex with 2 positive components. Two vertices (of a

3-dimensional polytope) are of course adjacent if and only if they share

Table 2

Vertex Positive Lies on Vertex Positive Lies on

of F* comDonents facets of F components facets

1 j f 1 0,8,9 - j = 1 1,4,8,9

2 j = 2 0,7,9 -

3 j = 3 0,7,8 -

4 j 1 1,8,9 1 j = 1 1,4,8,9

5 j = 2 2,7,9 2 j = 2 2,5,7,9

6 j = 3 3,7,8 3 j = 3 3,6,7,8

7 j = 1,2 1,5,9 4 j = 1,2 1,5,9

8 j = 2,3 2,6,7 5 j = 2,3 2,6,7

9 J i 1,3 3,4,8 6 j = 1,3 3,4,8

10 j = 1,2 2,5,9 2 j = 2 2,5,7,9

11 j = 2,3 3,6,7 3 j = 3 3,6,7,8

12 j = 1,3 1,4,8 1 J = 1 1,4,8,9

J
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two facets. Thus the vertices with 3 positive components adjacent to

t1,5,93, (2,6,7) and (3,4,81 are of the form (l,5,r3, f2,6,sJ and (3,4,t},

respectively; whereas those adjacent to (2,5,91, (3,6,7] and (1,4,8) are

of the form (2,5,u], (3,6,w) and (1,4,z], respectively. Clearly, at least

3 of these 6 potential vertices are distinct, and we know there exists a

4th vertex with 3 positive components. Finally, every vertex is adjacent

to exactly 3 other vertices. Checking all possible combinations shows

that there are only two ways of satisfying these requirements, namely if

(r,s,t1 = (2,3,11 and (u,w,z - (1,2,33, or if (r,s,t3 = (4,5,6) and (u,w,z) =

(6,4,5). In the first case, there exists a vertex (1,2,5', adjacent to

(1,5,9) and to (2,5,9); a vertex (2,3,63, adjacent to (2,6,7) and (3,6,7);

and a vertex (1,3,43, adjacent to (3,4,83 and to (1,4,8). The 4th vertex

with 3 positive components is in this case (1,2,3), adjacent to (1,2,53,

(2,3,63 and (1,3,4). In the second case, there exists a vertex (1,4,5),

adjacent to (1,5,93 and (1,4,8); a vertex (2,5,6], adjacent to (2,6,73 and

[2,5,9); and a vertex (3,4,6), adjacent to (3,4,83 and (3,6,7). The fourth

vertex in this case is (4,5,6), adjacent to (1,4,53, (2,5,6) and (3,4,6).

Thus the only two possible facial structures of F* are those represented

by the graphs G* and G* of Fig. 3.1:

Note that the polytope F*, which is bounded and totally nondegenerate

(simple), has 16 vertices and 24 edges. The (unbounded) polyhedron F has

at most (i.e., when the only degenerate vertices are those with I positive

component) 10 vertices and 18 edges, as shown in Fig. 4, where G1 and G2

are the "graphs" of F (the 3 unbounded edges of F being represented by "half-

edges" of G and G,).

/
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Thus P(K) has at most 4 facets induced by inequalities at > I with

> 0 for j = 1,2,3. The regularity of < £1,2,31 > is a necessary condi-

tion for the existence of 4 distinct facets of this type, but is not by

itself sufficient. For sufficiency we need, besides regularity, the absence

of any singular 4 x 4 submatrices of (V,e), as assumed in the Theorem.

Example 4. 1. Let G be the disjunctive graph shown' in Fig. 5.

0 3 \ 4\\/II

Fig. 5.

G has two disjunctive cliques, induced by the no F ets K1 = ,6

and K2 = £2,4,7], respectively. For < K1 > we have L1 =L(0,1) = 0,

L6  L(,6)- I an d1 -2, d6 - 3. P(KI) has 3 facets, defined by the

For < K2 >, we have L2 = L(0,2) - 2, L4 = L(0,4) 82, L7  L(0,7) . 3,

and d24 - 2, d27 -4, d42 - 4, d47 -3, d72 - 5, d74 = 6. We see that < K2 >is regular, and the matrix defining the polyhedron F ise K=1

I-

an K 2 = (24,) repciey Fo < | ehv lS (,)-0
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2 4 7

10 2 5

8 10 3

2 12 6

6 2 10

13 9 3

P(K ) has 10 facets: 3 of them are defined by the trivial inequalities

t 2  2,t 4 >. 2, t7 > 3 (Proposition 4.4); another 3 by the inequalities

t 2 + 2t4  > 10

t 2  + 2t 7 > 14

2t4 + 7t7 > 39

with 2 positive coefficients (Theorem 4.5); and, finally, 4 facets are

defined by inequalities with 3 positive coefficients (Theorem 4.6):

5t 2 + 16t 4 + 4t > 102

t 2 + 5t 4 + 19t7 . 115

13t 2 + 3t4 + 24t7 >206

t 2 + t 4 + 3t7 27.

These 4 inequalities correspond, in the notation of Theorem 4.6, to

the vertices J1,2,5), [2,3,6), J1,3,4) and [1,2,3), respectively, of F.

Here we have multiplied each inequality with the determinant in the

denominator of the expression (4.9) in order to express them in integers.I1

5. Lifting the Facets of the Clique Polyhedron

In this section we address the question as to how the results of the

previous sections can be used to derive facet inducing inequalities for the

general scheduling polyhedron P - clconv T introduced in section 1. In

| al Ij
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define to by to = 1(0,j) Clearly, to is a schedule in G. Further, by
j S'

the definition of S, J(O,J)S M L(O,J) for all jc(i} UB(i), hence t satis-

fies t. = L(O,i). The next n-q schedules t h , h = 1,...,n-q, are defined1

recursively by th = th-l for JcN'\(n-h+ll and th. = h-l ! for J = n-h+l.recrslelyby = tJ tj

Each of these vectors is a schedule that satisfies t. = L(O,i). Then the

h o
(n-q) x n matrix whose rows are the vectors t - t , h = 1,...,n-q, is of

the form M = (MI , M2  where M1 is (n-q) x q, while M2 is the (n-q) x (n-q)

nonsingular matrix

M2 ' -0 -

Thus M has rank n-q, and the n-q+l schedules th are affinely independent.1i

Corollary 5.2. The inequality t i > L(O,i) defines a facet of P if and

only if B(i) = 0.

Next we address the question of lifting the facets of clique polyhedra.

We need a couple of definitions and some auxiliary results.

Let < K > be a clique, S(K) an arbitrary acyclic selection in K, and

< K I> the maximal clique containing < K > . As before, let M be the index

set of the maximal cliques of G. We will say that the selection

S - U S(K r )
rcM

is a conformal extension of S(K) to G, if it satisfies the following

requirements:

(1) S(K ) is any acyclic extension of S(K) to < K > , such that, if

ici and cK, ,K, the rank of i in S(K,) is less than that of j.

*
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(i) For rcM\,[I2 such that K rB(K) = 0, S(K r) is any acyclic selec-

tion in < K >
r

(iii) For rcM\113 such that K r B(K) # 0, S(Kr) is any acyclic selec-(ii o rM[]ruhta rr

tion in < K > such that
r

(a) if icK rB(K) and jeK r'B(K), the rank of i in S(K r) is less than

that of j;

( ) if JCKr nB(i) for some ieK, the rank of j in S(Kr) is no greater

than the rank of i in S(K); and

(y) if i,hcK, j(i)eK rfB(i), J(h)cKr nB(h), and the rank in S(K) of i

is less than that of h, then the rank in S(Kr) of j(i) is less than that

of j(h).

For any itN, B(i) is the set of nodes jeN\ti) lying on the

(unique) path P(O,i) from 0 to i in D. Therefore every clique

has at most one node in B(i). Let M(i) be the index set of cliques

that have such a node, i.e., M(i) - CrcMIKrrIB(i)4), and let (Jr(i))

K N B(i).r

A (not necessarily maximal) clique < K > of G will be called

dominant, if for every i,heK such that M(i)flM(h) 0, and every

reM(i) n M(h),

(5.1) djr(i)jr(h) +L(Jr (h),h) < L(Jr (i),i) + d ih

The term "dominant" seems justified by the properties of these cliques.

Lemma 5.3. Let < K > be a dominant clique in G, and S(K) an acyclic

selection in < K > . Then every conformal extension S of S(K) to G has the

property that, if ieK, jc[0}U B(K) and i is reachable from j in the digraph

DS a (N3, A°' S), every longest path from j to i in DS contains only arcs of

A° U S (K).

IJ
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Proof. Let S be a conformal extension of S(K) to G, and for some icK,

ja;O} UB(K), let P(j,i)S be a longest path from j to i in D . Suppose now

that P(J,i)S contains an arc of S\S(K); in particular, let (jlj 2 ) be the

last such arc encountered when P(j,i)S is traversed in the direction of its

arcs, and let (jlj 2)¢S(K). Then from property (iii) of S, for k = 1,2,

jkCB(K); in particular, jk lies on the unique path P(0,k) in D for some

ikeK, and (il,i 2 )cS(K). Further, if < K > is dominant, djlJ2 + L(J2,i2) <

L(jl,i 1 ) + di 12, and replacing the segment of P(J,i)S from J to i 2 by

the path P(Jl,i 1 ) U [(il,i 2 )) yields a path from j to i in DS longer than

P(j,i)s. This proves that P(j,i)S cannot contain any arc of S\S(K).I
o

Theorem 5.4. Let < K > be a dominant clique in G, y a schedule for

< K > with associated selection S(K), and S a conformal extension of S(K)

to G. Then the vector t0e En defined by

/ 0 jeK

0
(5.2) t. = jeB(K)Ji

U - A(j,n) S  j eKU B(K)

is a schedule for G if U is sufficiently large to satisfy, for any

selection V in G, the condition

(5.3) u > max jL(O,n)v, max (yo + #(,n)v •
jeK

Proof. We show that t0  is a schedule for G by showing that it

is a schedule for DS. For this purpose we examine all the arcs of DS

and show that t0 satisfies the associated inequalities. All pairs i,j

considered below are such that (i,j)cA'. S.
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If both i and j belong to any one of the three sets K, B(K) or

N\KUB(K), then substituting the values of t. and to given by (5.2)
2. 3

into the inequality t° - to > dij shows the latter to be satisfied.3 1-- i

For ieB(K), jeN\KKUB(K), to-ti = U-I(J,n)s . L(Oi)s > d since

U > 1(0,n)s > £(0,i)S + dij + 2(j,n)s.

For ieK, jrN\KUB(K), t0t0, UL(j'n)s - y0 > d since U > yo

,(i'n)s> yo + dij + ,(J'n)

It remains to be shown that the constraints are also satisfied for

icB(K), jcK; for all remaining ordered pairings of the three index sets

used in the definition of t , the corresponding arc sets are empty.

Now for icB(K) and jcK, to - to = yo - £(O,i)s. Let the rank of node j

in S(K) be k. The schedule y satisfies the inequalities yj(h) > L(0,J)h)),

h = l,...,p, and Y?(h) - 0 (hl) > d~h- ),1(h)' h - 2,...,p, where p = IKI

and h is the rank of J(h) in S(K)., It is not hard to see that these inequal-

ities, plus the fact that j - J(k), imply

(5.4) y0 > max {L(o,J(k)), L(0,j(k-l)) + d

k -

L(O,j (1)) + k d.
h=2 j(h-1),j(h)

The expression on the righthand side of (5.4) represents the length

of a longest among those paths from 0 to j in DS, which use only arcs

in A 0 U S(K). Since < K > is a dominant clique, from Lemma 5.3 this

is equal to £(O,J)S, the length of any longest path from 0 to j in DS.

Hence we have

0 2 0 1(O40S 2(OJ)S - L(0,i)S > do
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Since to satisfies all the inequalities associated with the arcs of

DS, it is a schedule for DS, hence for G.I;

We are now ready to state the main result of this section.

Theorem 5.5. Let < K > be a (not necessarily maximal) dominant

clique of G, with IKI = p > 1. If the inequality ay . 1, where a,y¢ )P, de-

fines a facet of P(K), then the inequality (a,O)t > 1, where (a,O),t¢F n, de-

fines a facet of P.

Outline of proof If the inequality ny > I defines a facet of P(K), there

exists a set of p extreme points y i, i = 1,...,p of P(K), such that ny = I,

i = 1,... ,p.
i

Since < K > is dominant, from Theorem 5.4 every y has at least one con-

formal extension ti to G. From each such schedule ti for G, additional sched-

ules can be constructed by adding a small positive scalar to certain components.

Using this approach one can in fact construct n affinely independent schedules

ti for G, each of which is an extension of some schedule for < K > and there-

ifore satisfies ot 1 1. This proves that the inequality (a,O)t > 1 induces

a facet of P. Details are given in an Appendix.I

6. Identifying Violated Inequalities

For every clique < K > of G, let Y(K) be the set of all facet inducing

inequalities for P(K) - clconv T(K), and let Y - UY(K), where the union is

taken over all cliques of G. In order to be able to use the inequalities of

5 as cutting planes in an algorithm for solving (P), one needs a way to solve

the following

Constraint Identification Problem (CIP). Given some to Rn that satis-

fies t0- tO > t (i,j)cA, to > 0, icN, but violates some of the disjunc-
.1, ii

tions defining T, find an inequality in violated by t or show that none

exists.

I-
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Let t eRn be as defined in CIP, let < K > be a clique at least one

of whose disjunctions is violated by t° , let F(K) be the polyhedron defined

in Theorem 4.1 relative to < K >, and denote by tK the vector whose compon-
0

ents are tj, JcK. Further, let a be defined by

(6.1) ta °  mintotaaeF(K)).

Then if to 0 < 1, the inequality a0t > obviously cuts off to and

CIP is solved. Otherwise we have

Proposition 6.1. If tK0 0 > 1, t0 P(K), i.e., to satisfies all the in-

equalities of *(K).

000 0
Proof. If tKa° 1 1, then from the definition of a, atK > I for every

vertex a of F(K).II

Thus the procedure that suggests itself for solving CIP is to choose

some clique < K > at least one of whose disjunctions is violated by , and

solve (6.1). However, in the absence of additional information we may well

choose a clique < K > for which to ° > 1. Also, if < K > is large, solving

(6.1) is expensive. 
K

The next Theorem gives a sufficient condition for (K) to contain an

I0

inequality violated by t . The condition occurs frequently and is easy to

check. Furthermore, the Theorem restrict,. the size of < K > to the mini-

mum subject to the above condition.

Theorem 6.2. Let t be as defined in CIP. Let < K > be a (not nec-

essarily maximal) clique, with JKJ = p and to < ... < t such that to
jM l))

satisfies

(6.2) t°  - L(OJ(l)),

j( j
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(6.3) t 0  dtSj(p) j (p-l) +  J(p-l),J(p)'

and, if p > 3,

(6.4) t 0 t + d j(k-l),j(k) k =.](k) .1(k l

Further, let a0 be defined by (6.1). Then the inequality o0tK > I

cuts off to.

Proof. We prove by contradiction that t OM(K). It then follows that

5(K) contains an inequality that cuts off t° , and from (6.1), otK > 1 is

such an inequality.

Suppose tKeP(K). Then there exist vectors tcT( and scalars X > 0

i = 1,...,p+l, such that

p+l i
=y iEltki -- % i i

= I

Since tj( 1) > L(O,j(1)) for any t.eT(K) and (,) = L(,J()), we have

( = t i = l,...,p+l. Similarly, since t ) maxL(O,j(k)),
jMl jo(l)' sic j(k)tdfoaltcT)anto o !

tj(k-l) + djj(k-1),J(k )  for all t¢T( and to(k) = tj(k-l) + dj(k-l),j(k),
k =2,. .,p-l, it follows that t to
= 2.. (k)' k - 2 ,...,p-l, whenever p > 3.

But then from (6.3), for at least one i€l,...,p-+l], we have ti t
j(p) tj(p)

t +d =t dj(p),J(P), contrary to the assumption
J(p-l) +j(p-l),j(p) ji(P-l) +~ -),~)

that tcT(K), I,.. ,p+l. Thus t54P(K).1

Condition (6.2) of Theorem 6.2 requires that the smallest component

of tj be equal to the lower bound on its value in any schedule. This condi-

tion is always met by a basic schedule to for those cliques < K > such that

no node of B(K) is contained in any disjunctive clique. For other cliques,

the condition may or may not be satisfied, but it is of course easy to check.

-I
t.



44

The remaining conditions simply state that a minimum size clique to be

considered is the one with node set K - [j(1),...,j(p)], where j(l) is the

node for which to() = t(O,j(l)), and j(p) is the first node in the sequence

defined by t for which the condition tj(p) - tj(pi) 2 dj ( p - I ) , J ( p ) (and

hence the corresponding disjunction) is violated.

When there is no clique for which the conditions of Theorem 6.2 are
o

satisfied, there is no guarantee that a defined by (6-.1) cuts off to. In such

cases it is a reasonable heuristic to choose a clique for which (6.3) and (6.4)

are satisfied, while tj(1) - L(0,J(1)) is small (in comparison with other

cliques), and which has not yet been used to derive a cut.

Example 6.1. Consider the disjunctive graph G of Example 4.1.

Minimizing t 8 subject to t. - ti > d (i,j)eA and t > 0, icN, yields

t (0,2,0,2,0,l,3,6). Since to =L(0,) = 0 and t= 1 < to + d = 2,

the clique induced by [1,63 satisfies the conditions of Theorem 6.2. Thus

we solve

mn 00l + 1a6

s.t. 0a1 + 2a6 >? 1

4a, + 16 > 1

a1, a6 > 0

1 1
and find (a, 06) = (1/8, 1/2), which yields the inequality

t 1 + 4t 6 > 8

violated by to. Since < J1,6) > is a dominant clique, this inequality

induces a facet of P. Minimizing t 7 subject to the same constraints as

before, plus tI + 4t6 8, yields t = (0,2,0,2,0,2,4,6).

Since t= L(0,2) 2 and t < t1+ d24  4, the clique induced by

(2,43 satisfies the conditions of Theorem 6.2. Solving

-J
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min 202 + 204

s.t. 202 + 404 _ 1

6 02 + 204 > 1

o21 a4 ->0

22
yields (or 24) = (1/10, 1/5), and the inequality

t 2 + 2t4 > 10

violated by tI . Again, < (2,4) > is a dominant clique and hence the inequality

induces a facet of P. Adding this inequality to the earlier constraint set

2
on t and minimizing t7 yields t = (0,4,0,3,0,2,4,7).

The conditions of Theorem 6.2 are no longer satisfied, since t
° > L(0,J)

J

for j = 2,4,7. However, each of the cliques not yet used to derive a cut,

i.e., (4,7), (2,7] or (2,4,7], provides an inequality that cuts off t2 (this

can be seen by checking the list of facet-inducing inequalities for P(K 2 ) in

Example 4.1). In particular, if we take the clique (2,4,7), then solving

min 202 + 404 + 407

s.t. 2 2+ 404 + 707 1

102+ 204+ 507 > 1

802+104+ 307 >1

202+124+ 607 > 1

6 2 + 204+1007 > 1

1302+ 904 + 3a7 > 1

02, 04. a7 > 0,

yields (2 043, 7)" (13/206, 3/2Q6, 24/206) (with si = 0 for i = 1,3,4),

and the (facet inducing) inequality

13t 2 + 3t4 + 24t 7 > 206,

/

which cuts off t

-I
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Appendix: Proof of Theorem 5.5.

We will make use of the following auxiliary result:

Lemma 5.6. Let < K > be a dominant clIque of G, y an extreme point of

P(K) with associated selection S(K), and S a conformal extension of S(K) to G.

Further, let t0 be the extension to G of yo defined by (5.2), and let kcK be

such that y0 > L(O,k). Then every path P(i,j) S in DS originating with some

icB(k) and such that ts - tr = drs for all (r,s)cP(i,j)s, terminates in some

JcB (K).

Proof. Let P(i,j)S be a path in DS originating with some icB(k) and such

that t - t = d for all (r,s)OP(i,j). Since to .(O'i), there exists a
6 r rs S* iS

(longest) path P(O,i) S from 0 to i in D -such that to - to 0 d for all
5 r rs

(r,s)cP(O,i)S. It then follows that the path P(0,4)s:=P(O,i)sUP(ij) S is a

longest path from 0 to j in DS, since to0 - to0 = d for all (r,s)eP(0,J)S . Nows r rs S'
suppose JcK. Since < K > is a dominant clique of G, it then follows from Lemmma

5.3 that P(0,J)S contains only arcs of A US(K), i.e., is of the form P(O,k) U

P(k,J)s , where P(0,k) is the (unique) path from 0 to k in D. But then P(0,k)
to L(0,k), contrary to t~y

is a longest path from 0 to k in D and tk - = c r >

L(O,k), as assumed in the Lemma. Thus JOK.

Suppose next that JcN\K UB(K), and let (r,s) be the (unique) arc of P(i,,J)S

such that rgB(K), scNJCUB(K). Then from the definition of t° , ts " r >d rs
contrary to our assumption about P(ij)S. This proves that JiN'\KUB(K).

Consequently j cB(K).!',
i

Proof of the Theorem. Let y , i - 1,...,p, be extreme points of P(K),

each of which satisfies oy - 1. We will contract n schedules ti for G, each

of which is an extension of one of the p schedules y for < K >, and therefore

satisfies (ot,O)t - 1. We will then prove that these n vectors t c a are affine-

ly independent, by showing that the (n-I) x n matrix whose rows are the vectors
i I
t - t , i - 2,...,n, is of full rw rank.

W.l.o.g., we assume that the numbering of the nodes of G is such that

K (1,...,p), B(K) - p+l,...,q}, and N'KIUB(K) - (q+l,...,n).

(i) First, we extend to G the p affinely independent schedules y

i,...,p, for < K >. To this end for i - 1,...,p we let S(k)i be the selec-
ii

tion in < K > associated with y , and Si a conformal extension of S(K) i to G,

JiJ

-- - | "4
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with the proviso that the arcs of Si chosen freely under rule (ii) of the

definition of a conformal extension (see section 5) are the same for all

ic{l,... ,p. Next, for i = 1,...,p, we let ti be the extension of y to G de-

fined by (5.2) for S = Si, with the proviso that the scalar U used in the defini-

tion of ti be the same for all ka(l,...,p}. The fact that the vectors ti defined

in this way are schedules for G follows from Theorem 5.4. Note that our specifica-,nS ns i I j Ni UBK
tions for Si and t imply that I(j = (j ,n 1 and tj t jN\KUB(K),
i =2,...,n.1

Subtracting the vector t from each of the p-i vectors ti, i = 2,...,p,
S- I

yields the (p-l) x n matrix M1 whose rows are t
i - t , i = 2,...,p, and which

is of the form M1 = (H1 1, M 2, 0). Here Ml, is the (p-l) x p full row rank
i 1

matrix whose rows are the p-i linearly independent vectors y - y , i 2,...,p,
M12 is (p-1) x (q-p), and 0 is the (p-I) x (n-q) zero matrix.

(ii) The next q-p schedules ti , i = p+,. .. ,q, are generated as follows.

For every node keK, there exists at least one among the p vectors y chosen at
i (k) ik

the beginning of this proof, say yi , such that -yk) > L(O,k). To see why
i

this is true, notice that if y= L(O,k) for i = 1,...,p, then the p vectors y

lie in the (p-2)-dimensional subspace of IRP defined by the two equations a y y I

and yk - L(O,k), hence they cannot be affinely independent.

Now let S(R)i,k) be the selection in < K > associated with yi(k), Sik)

a conformal extension to G of S(K)i(k). and t i k ) the extension to G of
yi(k) defined by (5.2) for S - Si(k). For ieB(k), let A(i)i(k) be the set of

nodes JeN reachable from i (including i itself) by a path P(i,j)s  in D
i(k)_ ti~k) rein (k) i(k)

such that for every (r,s),P(i,j) 9 - r d rs, and let) i (k)

A(B(k))i) - U A(1iW )
= IS(k) i(k)

Then from Lemma 5.6. A(B(k))i(k) 'B(K), k - l,...,p, and since for each

kcl,...,p) by definition A(B(k))i(k) contains B(k),

p
U A(B(k))i(k) = B(K).

k-l

W.l.o.g., let the q-9 nodes of B(K) be numbered in such a way that

/

* -



A.3

A(B(1)) = (p+1,...,p +

A(B(2))1(2) A(B(1)) i(1) = (P + OI + .,p 2

p-I

A(B(p)) .. \ U A(B(r))i  (p + + .,P + p

with p + $p q; and, in addition, if i,jetp + k-i + 1,...,p + $k} for some

kcl,...,p3 (where we define a0 = 0) and (i,j)CAUS(K)i(k), then i < j.

We then define the vectors t
p+h for h = 1,...,1 by

t t i(l) + C j - p + a, - h+l,...,p + 1

j i(l) otherwise

with 0 < ch < 1, h = 1...,I; and for h = ak- + 1",. k' k = 2,.. .,p, by

tth + C j Cp + Ok-i + 0k h +I,...,p + k)UA(B(k))i(k)

otherwise

where 0 < cn < 1 ,- h, and

k-i

A(B(k)(k)k) = A(B(k))i(k) n ( U A(B(r))r)
r-l i(r)

From Lemma 5.6 and the definition of A(B(k))i(k), each of the vectors

tp+h defined above is a schedule for DS ), hence for G.

Renumbering the schedules t
p+h , b k p (q-p) as t i , i = p+l,...,q,

and subtracting from each ti the vector t1, we obtain the (q-p) X n matrix M2

whose rows are ti - t , i - p+l,...,q, and which is of the form M2 =

(M2 1, M22, 0). Here M2 1 is (q-p) x p, 0 is the (q-p) X (n-q) zero matrix, and

"22 is a (q-p) x (q-p) lower block triangular matrix of the form( 0 1'0
2 T2 . 0
21 2

2

sl xs2" Ts)



A.5

where is (p-1) x p and has full row rank. Let be a (p-i) x (p-1) non-

singular submatrix of MIl and let M21 be the matrix obtained from M21 by re-

moving the column corresponding to the one that was removed from M1 1 . Further,

let us permute the blocks of colmns of 12, and the corresponding blocks of

M12, by reversing the order of the s blocks, and let M and M1 be the resuiing22 12
matrices.

Then M is of full row rank if and only if the (n-l) x (n-l) matrix

11 M12

(0 0 M 33

is nonsingular. Since MI and M are nonsingular, M is nonsingular if and only
If the matrix Mo '=22 - M 21 M 11 2 is nonsingular. It is not hard to ,see that

the numbers c used in the construction of M22 can always be chosen in a way

that makes M nonsingular. We show this by induction on q-p. For q-p - 1,o

the condition is O # m,, where m, is the first element of the last row of

HM j 1L Such , obviously exists. Suppose the condition can be satisfied's
for q-p - 1,2,...,t-l, and let q-p = t. Let A be the matrix consisting of the

last t rows and first t columns of M . Denoting by aii the elements of A and

by Aij the cofactor of aii, and using expansion by the last column of A, we have

t

det (A) =aitAit + Z aitA •i--2

By the induction hypothesis, there exist numbers 0 < e < 1, j

Os - i,...,O s - t + 1, such that Alt 0 0. Since alt - 's t - 't, where t

is the element of M21M in the position corresponding to alt, we have that

det (A) 0 0 if and only if

Cs-t 0 m aitAit/At,
s 1-2

a condition which can obviously be satisfied. This completes the induction.

Thus the n schedules t for G, I - 1,... ,n, are affinely independent. In

addition, each one of them is an extension of a schedule for < K >, hence satis-

fies (a,0)t - 1. Therefore the inequality (n,O)t > 1 defines a facet of P.1!

• , , II
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to also induce facets of P(N). One of our results is that any inequality that
induces a facet of P(H) for some HCK, also induces a facet of P(K). Another one
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coefficients from one with p-l positive coefficients. We also address the constraint
identification problem, and give a procedure for finding an inequality that cuts off
a given solution to a subset of the constraints.
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